Autonomous Multi-Processor Systems-on-Chip Optimization with Distributed LCS

2011-06-17 A. Bernauer, G. Arndt, O. Bringmann, W. Rosenstiel
Motivation – Challenges in SoC Design

- Increasing **fabrication defects** and sensitivity for **stochastic events** from reaching CMOS physical limits
- Increasing **thermal problems**
- Increasing **degradation effects**

Goal: Self-adaptive circuits addressing
- increasing process-dependent and time-dependent variabilities,
- increasing design complexity (→ scalability) and
- higher design reuse rates.

Device Variations (Threshold Voltage) Soft Errors (Relative Failure Rate) Aging effect on transistor performance

(Borkar 2006)
General Goals

• Autonomous optimization of multi processor systems on chip (MPSoC) by distributed highly scalable learning classifier systems
 - each core is optimized by a separate XCS
 - each XCS adapts to his core
 → solving slightly different problems
 - considering core interaction
 → capturing thermal flow between cores
 - highly reusable system

• Optimization goal
 - Optimize performance w.r.t. temperature-related timing errors as well as ambient and core temperatures
XCS overview

Performance

- Perceive environment
- Determine appropriate response (rule matching)
- Perform action

Simple model of an intelligent agent interacting with an environment

- Search space of possible rules (evolutionary alg.)
- Goal: find cooperative set of rules to solve the task

Discovery

Reinforcement

- External system rewards “good” actions.
- Propagate reward to rules which triggered the action.

- Perceive environment
- Determine appropriate response (rule matching)
- Perform action

Performance
Design-time and run-time learning

Diagram: Design-time and run-time learning.
- **Design time**
 - Design-time rule set
 - Design space exploration
 - Learning: Fitness update + Rule set update
 - Design-time LCS (XCS)
- **Run time**
 - Run-time rule set
 - Run-time monitoring
 - Fitness update
 - Rule set update
 - Run-time LCS

Rule-set translation
- empty
- random
- constructed
- Design-time rule set
- Rule set compactification
Distributed XCS – Basic Concept

Remark:
- Distributed XCS without communication
 - only local decisions
 - thermal flow are not considered
 - cores can not be properly controlled
- Global XCS
 - too complex, not scalable
 - large action set → restriction needed
 - applicable for identical core instances

Selecting classifiers to be deleted
- inverse fitness
- action set size
- prediction error
- any combination

Selecting classifiers to be copied
- randomly
- highest numerosity first
- highest fitness first

Communication Topology

Inter-XCS Communication
- uni/bi-directional ring
- complete graph
- mesh, …
Experimental Setup

- Simulation of Cell processor
- Goal: optimize performance, avoiding temperature-dependent timing errors
- Loads and ambient temperature vary

- Investigate different
 - Communication topologies
 - Migration strategies
 - Deletion strategies
- Procedure: first 5-core model, then 10-core model
Results 5-core model

Best configuration:
- Emigrate by fitness
- Communicate w. medium conn.
- Delete by prediction err.
Results 10-core model, topology with 3 neighbors

Thermal convection resistance:

- $r = 0.05$
- $r = 0.10$
- $r = 0.20$
Results 10-core model, topology with 6 neighbors

Thermal convection resistance:

\[r = 0.05 \] \hspace{2cm} \[r = 0.10 \] \hspace{2cm} \[r = 0.20 \]
Results 10-core model, topology with 9 neighbors

Thermal convection resistance:

- $r = 0.05$
- $r = 0.10$
- $r = 0.20$
Conclusions

• Autonomous Optimization with Distributed Learning Classifier Systems (LCS)

• Optimize frequency and voltage to maximize performance but no timing errors

• Best configuration:
 - Emigrate by fitness
 - Communicate with medium connectivity graph
 - Delete by prediction error

• Future work:
 - More accurate model
 - Different process variabilities
Thank you.

Contact:

Oliver Bringmann
FZI Research Center for Information Technology
Haid-und-Neu-Str. 10-14
76131 Karlsruhe
Phone: +49 721 9654-455
Fax: +49 721 9654-456
Email: bringmann@fzi.de