How Much Power Oversubscription is Safe and Allowed in Data Centers?

Xing Fu1,2, Xiaorui Wang1,2, Charles Lefurgy3

1EECS @ University of Tennessee, Knoxville
2ECE @ The Ohio State University
3IBM Research, Austin
Introduction

- Power: a first-class constraint in data center design
- Power oversubscription by power capping
 - Improves power facility utilization
 - Improves server performance
- Power capping at different levels
 - Servers, racks, and data centers
 - However, they all share a common assumption

Power should never exceed the rated power capacity?

- Otherwise the circuit breaker (CB) would trip?
- Not really! circuit breakers can sustain short overloads.
How Much Power Subscription is Safe?

- A CB trips or not depends on
 - **Magnitude** of the overload
 - **Duration** of the overload

- Ideal upper bound?
 - Lower bound of the tolerance band

- This paper
 - Investigates CB trip features
 - Proposes adaptive power control to
 1. Fully utilizes the allowed overload interval for maximized server perf.
 2. Safely hosts more servers without upgrading power facilities

Trip curve of a typical circuit breaker

- Two minutes
- 1.17 rated capacity

Rated capacity
- 1.17 rated capacity
- Conventional Tripping
- Short Circuit
- Long-delay
Proposed Solution: CB-Adaptive

- More than just a standalone controller
 - A methodology that adapts the parameters of existing power controllers to engineer their settling times
- Example: adapts a server power controller [Lefurgy ICAC’07]
 1. Obtain the tripping time from the CB tripping curve
 2. The desired settling time should be the tripping time
 3. Adapt controller parameter K to enforce the settling time
CB-Adaptive Design Details

- System model

 \[p(k + 1) = p(k) + Ad(k) \]

 - \(p(k) \) is the power of the server
 - \(d(k) \) is the change to the CPU frequency
 - \(A \) is a hardware-specific parameter when the server runs LINPACK

- How to adapt the controller parameter?
 - The relationship between the parameter and the settling time
 - The parameter is a function of the measured power, the rated current of CB, and the control period.
Two CB-Adaptive Improvements

- Temperature-aware CB-Adaptive
 - The CB trip curve is impacted by the ambient temperature.
 - The rated current of CB is a linear function of the temperature.
 - K is also a function of ambient temperature.

- CB-Proactive
 - Delicately increases DVFS level in a proactive way
 - Further improves the server performance
 - When and to what extent the DVFS level is increased?
 - CB enters the long-delay region
 - Increase the frequency to the highest level
Discussion on Power Oversubscription

- Possible applications of CB-Adaptive
 - Hosting additional servers
- Safety issues
- A typical power delivery system

- Every component can tolerate overloads like CBs
 - Overload capacity: power beyond which permanent damage occurs to the component
More Discussion

- Components other than CBs do not experience overloads frequently.
 - It is less likely that many servers reach their peak power simultaneously.
 - Evidenced by a real Google data center [Fan ISCA’07]
- When only a branch circuit is overloaded
 - CB-Adaptive can be applied directly
- When multiple branch circuits are overloaded
 - CB-Adaptive needs to consider the tripping time of components other than CBs.
Hardware Testbed

- Dell OptiPlex 380
- Rockwell Allen-Bradley 1489-A Industrial CB
- Workloads
 - SPEC CPU2006
 - SPEC JBB
 - LINPACK
Baselines

- **NoControl**
 - Estimates the peak power consumption of a server
 - No power caps
 - Unsafe and conservative

- **P-Control**
 - Measures the power in every control period
 - A non-adaptive proportional controller calculates frequency changes to enforce a power budget.

- **P-Control-CB**
 - The power budget is different from that of P-Control
 - Upper bound of the long-delay region of the CB
Power Control Comparison

- **NoControl** causes the CB trips. **Unsafe**
- **P-Control & P-Control-CB** Unsafe and conservative
- **CB-Adaptive** fully utilizes overload intervals of CBs.
- **Raise CPU freq for higher performance**
Performance Comparison

- CB-Adaptive outperforms P-Control by
 - 66%, for LINPACK
 - 29% to 49%, for SPEC CPU 2006
 - 74%, for SPEC JBB
Impact of Temperature

- Temperature impacts the trip time significantly.
- Temperature-blind solutions P-Control-CB, CB-Adaptive and CB-Proactive are not safe.
Temperature-Aware CB-Adaptive

- As the temperature increases, the performance of servers decreases.
- The performance decrease is modest.
Power Provisioning Analysis

- **NoControl**

 \[
 \text{The number of servers} = \frac{\text{Rated power of the CB}}{\text{estimated server power}}
 \]

 - The estimation is too conservative
 - 7 servers hosted per branch

- **P-Control**

 - Enforce a power budget instead of an estimation of power
 - 13 servers hosted per branch

- **CB-Adaptive**

 - Enforce a higher power budget than P-Control
 - 20 servers hosted per branch
Conclusions

- A common assumption of existing power capping
 - Peak power should never exceed the rated CB capacity

- This paper
 - Systematically studies the CB tripping characteristics
 - Identifies ideal upper bound of safe power oversubscription
 - Proposes two adaptive power control strategies

- Evaluation on safe power oversubscription
 - A single server: 38% performance improvement
 - Circuit branch: host 54% more servers without upgrading power infrastructure
Questions?

- Acknowledgements
 - NSF CAREER Award CNS-0845390
 - NSF CSR Grant CNS-0720663
 - NSF SHF Grant CCF-1017336
 - Prof. Leon Tolbert at the University of Tennessee

Thank you!