iPOEM: A GPS Tool for Integrated Management in Virtualized Data Centers

Hui Zhang¹, Kenji Yoshihira¹, Ya-Yunn Su², Guofei Jiang¹, Ming Chen³, Xiaorui Wang³

1. NEC Laboratories America
2. National Taiwan University
3. University of Tennessee
Virtualized data centers: server consolidation and green IT

- **Server consolidation** - virtualization facilitates consolidation of several physical servers onto a single high end system
 - Reduces management costs/overheads
 - Increases overall utilization

- **Green IT** - computing more, consume less
 - Improving infrastructure efficiency
 - Increasing IT productivity

Today

\[
DCiE = \frac{IT \text{ load power}}{\text{Total data center input power}}
\]

Future

\[
DCpW = \frac{\text{Data center useful work}}{\text{Total facility power}}
\]

DCiE: Data center infrastructure efficiency

DCpW: Data center performance per Watt
Virtualized data center management

- Server utilization based performance and power management mechanisms
 - VMware DPM, NEC SSC, IBM Tivoli…
iPOEM: a middleware for integrated power and performance management

- Features declarative management methodology
 1. accepts higher-level management objectives
 - target system status set on individual management components
 2. generates low-level management configurations.
 - Configuration settings of individual management components

- A GPS tool is a good metaphor.

 driver • How can I go to NYC?

 car • How can I get the system to 20% less power cost?

 operator

 system

 1. Map
 2. Direction

 GPS device

 1. System status
 2. Management decisions

 iPOEM
Research Goal

Management challenges

Data center administrator

Human-friendly management interfaces

This paper

System Complexity

Workload Dynamics

System Dynamics

Performance management

Power management

Application management

Thermal management

Virtualized data center

iPOEM

failure

migration

remove/add
iPOEM APIs

API 1: `get_position()`

Input: Management Configuration
- (Time start, Time end)
- Workload (reshaping-scheme)
- VM-server map, resource inventory

Output: System Status

API 2: `put_position()`

Input: Target Performance & Power
- (Time start, Time end)
- Workload (reshaping-scheme)
- VM-server map, resource inventory

Output: Management Configuration

System status is described in 3 metrics

- **Performance cost**: server overloading time in percentage.
- **Power cost**: KWatts, total power consumed.
- **Operation cost**: VM migrations.
iPOEM architecture
iPOEM management configuration engine

API 1: `get_position()`
System status as a function of management configurations

Fig. 7. The system status as a function of (CPU_{low}, CPU_{high}).
Formal description of system status functions

Assume a homogeneous system, and the workload remains the same for different configuration settings.

Theorem 1. *Performance-cost(CPU\textsubscript{high}) is a non-decreasing function of CPU\textsubscript{high}.*

Theorem 2. *Power-cost(CPU\textsubscript{low}) is a non-increasing function of CPU\textsubscript{low}.*
iPOEM configuration searching algorithm

- A $O(\log R)$ searching algorithm
 - where $R = CPU_{max} - CPU_{min}$, the allowable load range

API: put_position().

Input: t_{start}, t_{end}, workload re-shaping scheme, Performance target, Power target, e & α (error tolerance).

Output: management configurations (CPU_{low}, CPU_{high}), operation cost & actions.

Algorithm:

1. Assign $CPU_{low} = CPU_{max}$, $CPU_{high} = CPU_{max}$.
2. $(Performance_{cost}, Power_{cost}) = get_position(CPU_{low}, CPU_{high}, t_{start}, t_{end}, \text{workload re-shaping scheme})$.
3. If $Power_{cost} > Power_{target}$, then a subset of servers has been turned off forcedly to meet $Power_{target}$:
 - (a) (VM-server map, resource inventory) = forced_down($Power_{target}$, t_{start}).
 - (b) $Power_{cost} = Power_{target}$, $CPU_{low} = CPU_{max}$.
4. Else, //start binary searching for CPU_{low}
 - (a) $CPU_{left} = CPU_{min}$, $CPU_{temp} = CPU_{low}$, $CPU_{right} = CPU_{low}$.
 - (b) while($CPU_{left} < CPU_{right}$)
 - (c) $CPU_{temp} = \frac{CPU_{left} + CPU_{right}}{2}$.
 - (d) $(Performance_{cost}, Power_{cost}) = get_position(CPU_{temp}, CPU_{high}, t_{start}, t_{end}, \text{workload re-shaping scheme})$.
 - (e) If ($Power_{cost} > Power_{target}$)
 - (f) $CPU_{left} = CPU_{temp}$, $CPU_{left} + 1$.
 - (g) Else if ($Power_{cost} < Power_{target}$ - $\frac{e}{2}$)
 - (h) $CPU_{right} = CPU_{temp} - 1$.
 - (i) Else, //find the configuration for CPU_{low}
 - (j) $CPU_{low} = CPU_{temp}$, break;
5. $CPU_{left} = CPU_{low}$, $CPU_{temp} = CPU_{high}$, $CPU_{right} = CPU_{high}$;
 - (a) while($CPU_{left} < CPU_{right}$)
 - (b) repeat binary searching for CPU_{high}
6. return (CPU_{low}, CPU_{high}), and the corresponding operation cost & actions.
iPOEM prototype implementation
iPOEM System positioning services

- Position reporting
- Destination searching
Evaluation: data center workload traces

- Traces on 2525 servers from 10 IT systems
 - Each is regarded as a VM in the simulations.
- Monitoring data: CPU utilization.
- 1 week length, 15 minute monitoring frequency
 - 672 time points
Evaluation: methodology

- Run the iPOEM prototype as an offline engine.
 - It is driven by the data traces stored in the monitoring database, and emulates the integrated management in a virtualized data center hosting the 2,525 servers as VMs.
- The system and management configuration settings
 - Performance manager and power manager
 - Implementation of the simplified schemes in NEC SigmaSystemCenter middleware
 - The default $<\text{CPU}_{\text{low}}, \text{CPU}_{\text{high}}>$ setting is $<40\%, 80\%>$.
 - The physical servers are homogeneous with the same CPU specs
 - 3GHZ Quadra-core (the most common CPU model in the traces).
 - Performance cost: number of performance violation in a time epoch
 - A server has a performance violation at a time point when its CPU utilization is larger than a threshold (90% in the paper).
 - Power cost: we assume power consumption per server is either 0 (power-off mode) or 200Watts (power-on mode), simplified on the power model profiled in the local testbed.
 - Operation cost: the number of VM migrations that the performance and power managers need to execute for the server load configuration enforcement.
iPOEM engine performance

iPOEM engine response time to service requests

iPOEM engine performance

destination searching
position reporting

iPOEM engine response time to service requests
iPOEM auto-piloting service

- Sensitivity based optimization [Markovic et al. 2004]

\[
\min \text{ Power(configs)} \quad \text{s.t.} \quad \text{Performance(configs)} \leq P_{th}
\]

where \(P_{th} \) is the upper bound of the performance cost.

Service: Auto-piloting.
Input: \((m \times n)\)-grid map, migration cost threshold \(t \)
Output: management configurations \((CPU_{low}, CPU_{high})\).
Algorithm:
1. Prune all grid nodes with migration cost \(> t \) in the map.
2. If no node remains, return the current configuration.
3. Else, for the remaining grid nodes, calculate the cost sensitivity on each \(x \) with the configuration \((CPU_{low}^x, CPU_{high}^x)\) as:

 \[
 \text{Sensitivity}(x) = \left| \frac{\Delta \text{Performance}_\text{cost}}{\Delta CPU_{low}^x} - \frac{\Delta \text{Performance}_\text{cost}}{\Delta CPU_{high}^x} \right|
 \]

4. Pick the grid node \(x \) with the minimal \(\text{Sensitivity}(x) \) value, return \((CPU_{low}^x, CPU_{high}^x)\).
iPOEM auto-piloting evaluation

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Performance cost</th>
<th>Power cost</th>
<th>Migration cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-piloting</td>
<td>1.55% (4.38%)</td>
<td>20.88 (9.9)</td>
<td>37.7 (53)</td>
</tr>
<tr>
<td>Static - (10%, 10%)</td>
<td>0</td>
<td>96 (13.5)</td>
<td>342 (510)</td>
</tr>
<tr>
<td>Static - (10%, 90%)</td>
<td>2.26% (3.66%)</td>
<td>24.68 (5.08)</td>
<td>23.4 (55.4)</td>
</tr>
<tr>
<td>Static - (90%, 90%)</td>
<td>4.46% (3.93%)</td>
<td>16.1 (2)</td>
<td>118.4 (407.2)</td>
</tr>
</tbody>
</table>

Comparison of Auto-piloting and three static configuration schemes

![Auto-piloting System Configuration Evolution](image-url)

Auto-piloting management configuration evolution
Conclusions & Future Work

• iPOEM, an integrated power and performance management middleware in an virtualized infrastructure.
 – human-friendly interfaces for multi-objective management.

• Future work
 – Meta-management integrating more objectives.
 • explosive growth of the system state space
 – mashup services for customized tenant management
 • new API designs
Thank you.

• Questions?
Appendix